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Finite-Time Stabilization of Linear Systems With Unknown Control
Direction via Extremum Seeking
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Abstract—In this article, the finite-time stabilization problem
is solved for a linear time-varying system with unknown control
direction by exploiting a modified version of the classical
extremum-seeking algorithm. We propose to use a suitable oscil-
latory input to modify the system dynamics, at least in an average
sense, so as to satisfy a differential linear matrix inequality con-
dition, which in turn guarantees that the system’s state remains
inside a prescribed time-varying hyperellipsoid in the state space.
The finite-time stability (FTS) of the averaged dynamics implies
the FTS of the original system, as the distance between the original
and the averaged dynamics can be made arbitrarily small by choos-
ing a sufficiently high value of the dithering frequency used by the
extremum-seeking algorithm. The main advantage of the proposed
approach resides in its capability of dealing with systems with
unknown control direction, and/or with a control direction that
changes over time. Being FTS a quantitative approach, this article
also gives an estimate of the necessary minimum dithering/mixing
frequency provided, and the effectiveness of the proposed finite-
time stabilization approach is analyzed by means of numerical
examples.

Index Terms—Extremum seeking (ES), finite-time stability (FTS),
Lie bracket averaging.

I. INTRODUCTION

Extremum seeking (ES) was originally introduced in [1] as a method
to find the (local) extrema of an unknown function, possibly the output
of a dynamical system, which depends on one or more tunable param-
eters. The gist of this technique is to start from a rough estimate of the
optimal parameters’ value and then exploit a sinusoidal perturbation to
explore the unknown map around the said estimate in order to move
toward a local optimum. A formal proof of the stability of ES applied to
the stable nonlinear systems with an unknown output map first appeared
in the literature in 2000 (see [2] and the references therein), which made
the use of a combination of averaging and singular perturbation theory.

A first attempt to extend this technique to simple linear marginally
stable and unstable systems can be found in [3], where a method
for tracking a target emitting a signal in the absence of any position
measurement was proposed for autonomous vehicles. Although [3]
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regarded the stability properties of the considered system as an ob-
stacle for the optimization of the output functional, the stabilization
of the system can also be considered a goal by itself; in this view,
the modified ES algorithms that minimize Lyapunov-like functions
have been proposed. In particular, a possible stabilizing ES technique
was originally introduced in [4], where Stanković analyzed the link
between the trajectories of a system excited by a periodic, zero-average
perturbation and the associated Lie-bracket averaged system [5]. It
can be shown that the trajectories of the original system converge
uniformly to those of the averaged system as the parameter ε, linked
to the frequency and the amplitude of the perturbation, tends to 0.
Moreover, exploiting the notion of semiglobal practical stability in-
troduced in [6], it can be shown that if the Lie-bracket averaged system
is globally uniformly asymptotically stable, then the original system is
practically globally uniformly asymptotically stable for a sufficiently
small value of ε, i.e., its trajectories are confined in aO(ε)neighborhood
of the origin of the state space. Based on that, Scheinker [7] and
Scheinker and M. Krstić [8] analyzed the stabilizing properties of
the proposed ES scheme for a variety of systems (including linear
time-varying (LTV) and nonlinear and non-affine in control systems)
using different dithering signals. The proposed methodology is applied
to the problem of tuning the quadrupole magnets and the bouncer
cavities of a particle accelerator installed at the Los Alamos Neutron
Science Centre. A great advantage of this stabilization technique is
that it is capable of dealing with systems whose control direction is
unknown.

Inspired by these works, in this article, we try to extend these ES
stabilization results to a different kind of stability property, namely the
finite-time stability (FTS) of the linear dynamical systems [9].

Finite-time (FT) stabilization is a concept linked to, but indepen-
dent from, Lyapunov stabilization. In particular, a system is said to
be FTS with respect to a given time horizon T , an initial time in-
stant t0, a positive-definite symmetric matrix R, and a positive-definite
symmetric matrix-valued function of time Γ(t) defined over the time
interval [t0 , t0 + T ], if the state trajectory starting from a point inside
the hyperellipsoid defined by xT

0 Rx0 ≤ 1 stays inside the time-varying
hyperellipsoid defined by xT (t)Γ(t)x(t) < 1.

The concept of FTS, originally introduced in the control literature in
the 1960s [10]–[12], has seen a renewed interest when efficient compu-
tational tools to solve algebraic and differential linear matrix inequality
(DLMI) problems became available, allowing to verify “practical”
FTS conditions [13], [14] for LTV systems. More recently, the FTS
problem has been tackled for hybrid systems [15], [16] as well as in
the stochastic framework [17]–[19]. Such increasing interest in FTS
and associated input–output notion [20] comes from the possibility
of effectively adopting FTS concepts to enforce specific quantitative
requirements on the transient of the closed-loop response of a control
system [21].

The main idea of the present article is to apply the FTS stabilization
techniques available in the literature to the Lie-bracket averaged model
obtained after applying the ES controller to a LTV plant. As it will be
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discussed later, this approach has the main advantage of being able of
dealing with systems whose control direction is unknown and possibly
time-varying, as only the product B(t)BT (t) appears in the obtained
DLMI condition. Then, we exploit the uniform convergence of the
trajectories of the original system to those of the averaged one to draw
conclusions on the dithering frequency needed to keep the distance
between the true and the averaged state trajectories below a prescribed
threshold, in order to extend the FTS properties of the averaged system
to the actual one.

It is worth to remark that our approach for FTS differs from what
has been proposed in [22], where the problem of tracking a desired
trajectory is tackled. Oliveira et al. [22] showed that the proposed
control approach can be also effectively used to seek the extremum of a
given output function. Conversely, in this article, a modified version of
the ES algorithm is used to keep the state trajectory within the prescribed
bounds over a chosen FT horizon.

The rest of this article is organized as follows. Section II gives an
overview of the mathematical background, including the main concepts
of Lie bracket averaging and FTS. Section III presents the application of
the FT control techniques presented in [9] to the Lie-bracket averaged
system. In section IV, some practical indications are given for the choice
of the dithering frequency of the ES scheme. Finally, Section V shows
some examples of the application of the proposed technique.

II. BACKGROUND OVERVIEW

In this section, some preliminary concepts are introduced. In par-
ticular, in Section II-A, the notion of the Lie-bracket averaged system
associated to a dynamical system subject to periodic inputs is presented;
in Section II-B, the notion of systems with converging trajectories, i.e.,
state trajectories whose distance can be made arbitrarily small by acting
on a parameter, is discussed. Finally, in Section II-C, the concept of
FTS of a linear system is recalled, together with some necessary and
sufficient conditions.

Notation: In the following, || · || denotes the norm of a matrix,
whereas | · | denotes the norm of a vector. Moreover, given two sym-
metric matricesM andN ,M ≺ 0 indicates thatM is negative-definite,
M � 0 indicates that it is positive definite, M � 0 indicates that it is
negative-semidefinite, and M � 0 indicates that it is positive semidef-
inite; M ≺ N is equivalent to M −N ≺ 0 and similarly for M � N ,
M � N , and M � N . Dom(·) indicates the domain of a function.
Finally, [f(·)]tt0 := f(t)− f(t0).

A. Lie Bracket Averaging

Consider a system in the general form as follows:

ẋ(t) =

m1∑
i=1

bi(x)ui(t) +
1√
ε

m2∑
i=1

b̂i(x)ûi(t, θ)

x(t0) = x0 (1)

where the functions ûi(t , θ) are Tu-periodic in θ = t/ε with zero aver-
age on the period Tu. The Lie-bracket averaged system [8] associated
to (1) is as follows:

˙̄x(t) =

m1∑
i=1

bi(x̄)ui(t) +
1

Tu

m2∑
i=1 ,i<j

[b̂i , b̂j ](x̄)νij(t)

x̄(t0) = x(t0) (2)

where νij(t) is defined as

νij(t) =

∫ Tu

0

∫ θ

0

ûi(t, σ)ûj(t, θ)dσdθ

and [b̂i , b̂j ](x) is the standard Lie bracket of b̂i(x) , b̂j(x)

[b̂i, b̂j ](x) =
∂b̂j(x)

∂x
b̂i(x)− ∂b̂i(x)

∂x
b̂j(x).

Note that this definition holds for all the integer multiples nTu of
the period Tu.

B. Converging Trajectories Property

The basic hypothesis that underlies the method proposed in this
article is the convergence of trajectories [6] for the original and the
averaged systems. Consider a generic system

ẋ(t) = f(t , x) (3)

and its perturbed counterpart

ẋ(ε)(t) = f (ε)(t , x(ε)) (4)

where the superscript (ε) indicates the dependence of the system dy-
namics on the small parameter ε [e.g., as in (1)]. Denote by Φ(t, t0, x0)
and Φε(t, t0, x0), the solutions of (3) and (4), respectively, passing
through the point x0 at t = t0. Systems (3) and (4) are said to
have converging trajectories if ∀ T̂ > 0 ∀K is a compact subset
of Rn such that {t ∈ [t0 , t0 + T̂ ], x ∈ K} ∈ Dom(Φ) and ∀Δ > 0,
∃˜ε∗ > 0 such that ∀˜t0 ∈ R, ∀˜x0 ∈ K and ∀˜ε ∈ (0, ε∗)∣∣Φ(ε)(t, t0, x0)− Φ(t, t0, x0)

∣∣ < Δ ∀t ∈ [t0, t0 + T̂ ] .

In particular, this property holds for a given system
in the form (1) and the corresponding Lie-bracket aver-
aged system (2) [6], [8], [23], in the sense that, given
the period Tu < 0, n ∈ N, then ∃ ε∗ > 0 : ∀ ε ∈ (0, ε∗)

max
t∈[0,nTu]

|x(t)− x̄(t)| ≤ Δ(nTu , ε)

where Δ → 0 as ε → 0.

C. FT Stabilization (With Ellipsoidal Domains)

We now recall the definition of FTS [9] of a LTV system. Generally
speaking, given a positive-definite, symmetric matrix R and a positive-
definite, symmetric matrix-valued function Γ(t) defined over a time
interval [t0, t0 + T ], and an autonomous LTV system in the form

ẋ(t) = A(t)x(t) , x(t0) = x0 (5)

is said to be FTS with respect to (t0 , T ,Γ(·) , R), iff, by definition

xT
0 Rx0 ≤ 1 ⇒ xT (t)Γ(t)x(t) < 1 , t ∈ [t0 , t0 + T ] . (6)

Note that, for this definition to be well-posed, it must hold true
that Γ(t0) ≺ R.

In [9, Th. 2.1], several equivalent conditions are given in order to
assess if a system in the form (5) is FTS. These conditions can be
extended to the state feedback closed-loop system

ẋ(t) = A(t)x(t) +B(t)u(t) (7a)

u = K(t)x(t). (7b)

In particular, the system (7) is said to be FT stabilizable by a linear
static state feedback control law w.r.t. (t0 , T ,Γ(·) , R) iff [9, Th. 3.1]⎧⎪⎪⎨

⎪⎪⎩
−Q̇(t) +Q(t)AT (t) +A(t)Q(t) + LT (t)BT (t)
+B(t)L(t) ≺ 0
Q(t) ≺ Γ−1(t) , t ∈ [t0 , t0 + T ]
Q(t0) � R−1 , t ∈ [t0 , t0 + T ].

(8)
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If condition (8) is satisfied for some Q(t) and L(t), then the con-
troller gain that FT stabilizes the system is given by

K(t) = L(t)Q−1(t) . (9)

III. FT STABILIZATION VIA ES AND LIE BRACKET AVERAGING

We are now ready to introduce the main contribution of this article,
namely the FT stabilization of the single-input LTV systems via ES.

Let us consider a single-input LTV system in the form

ẋ(t) = A(t)x+B(t)u , x(t0) = x0 (10a)

where B(t) ∈ Rn×1, and the following control law

u(t) = α
√
ω cos(ωt)− k

√
ω sin(ωt)xTΠ(t)x (10b)

where theΠ(t)matrix is assumed to be symmetric and positive definite.
This particular choice of the control term is similar to the one proposed
in [8]; the reason behind this choice is that ifΠ(t) = Γ(t) is chosen, then
it is possible to directly take into account the quantity xT (t)Γ(t)x(t)
that appears in the FTS problem statement (6), similarly to what is done
with LgV controllers in Lyapunov techniques. Moreover, the setting
Π(t) = Γ(t), which is, indeed, made in Section IV, will also turn useful
in deriving a practical criterion for the choice of the dithering frequency.
However, in order to keep the discussion as general as possible, a generic
symmetrical positive-definite matrix Π(t) is considered until this as-
sumption is explicitly introduced in Section IV. Now, by applying (2)
to (10), provided that the quantity 1/ω is small enough for the averaging
results to hold, the following Lie-bracket averaged system is obtained

˙̄x(t) = A(t)x̄− kαB(t)BT (t)Π(t)x̄ (11)

where 1
ω

plays the role of the small parameter ε.
If the averaged system can be FT stabilized, then the converging

trajectories property stated in Section II-B ensures that the state of the
closed-loop system will be drawn toward the desired region of the phase
space as ω → ∞.

Clearly, the FTS of the averaged system does not automatically imply
the FTS of the closed-loop system, because the oscillations of x(t)
around the averaged trajectory x̄(t) could still violate the requirement
xT (t)Γ(t)x(t) < 1. However, thanks to the convergence of trajectories,
for any given value of Δ (i.e., the maximum allowed distance between
x and x̄), it is always possible [5], [23] to find a minimum frequency
ω∗ such that |x− x̄| < Δ ∀ω > ω∗. Thus, proper FT stabilization of
system (10) can be achieved by FT-stabilizing the averaged system (11)
with respect to an opportune smaller region in state space, and then by
choosing a frequencyω such that the distance between the boundaries of
these two regions is not exceeded by the distance of the state trajectory
from its average (see Fig. 1).

This observation leads us to establish the following lemma.
Lemma 1: Consider the two hyperellipses defined by

xTΓx = 1 , yTΓy = r2 (12)

where Γ is a n× n positive-definite matrix and x, y ∈ Rn. Then,
the minimum distance between the two hyperellipses is given by
(1− r)mini γi, where { 1

γ2
i

} is the set containing all the eigenvalues

of Γ.
Proof: First of all, assume, without loss of generality, that

Γ = diag( 1
γ2
1

, 1
γ2
2

, . . ., 1
γ2
n
) Indeed, since Γ is positive definite, there

always exists an orthonormal matrix V such that ΓV = V D, with D
diagonal. Now, consider the quantity

1− r2 =
n∑

i=1

x2
i − y2

i

γ2
i

=
n∑

i=1

(xi − yi)
xi + yi
γ2
i

.

Fig. 1. Aim of the proposed technique is to FT stabilize the averaged
dynamics x̄(t) (dash-dotted red trajectory) with respect to Γ̄(t) (the
ellipse defined by xT Γ̄x = 1 is shown by the dash-dotted red line). If
the distance between x(t) and x̄(t) is bounded, the matrix Γ̄(t) can
be chosen so as to guarantee that the state trajectory x(t) is FTS with
respect to Γ(t) by choosing Γ̄(t) appropriately.

By applying the Cauchy–Schwarz inequality, we find

1− r2 ≤
[

n∑
i=1

(xi − yi)
2

]1/2 [ n∑
i=1

(xi + yi)
2

γ4
i

]1/2

≤
[

n∑
i=1

(xi − yi)
2

]1/2 [ n∑
i=1

(xi + yi)
2

γ2
i

]1/2
1

mini(γi)

=
|x− y|
mini(γi)

[
n∑

i=1

(xi + yi)
2

γ2
i

]1/2

.

Then, by applying the triangular inequality to the term in square brackets

1− r2 ≤ |x− y|
mini(γi)

⎧⎨
⎩
[

n∑
i=1

x2
i

γ2
i

]1/2

+

[
n∑

i=1

y2
i

γ2
i

]1/2
⎫⎬
⎭

=
|x− y|
mini(γi)

(1 + r)

hence, |x− y| ≥ (1− r)mini γi. Observe that the equality is attained
whenx and y are aligned with the minor semiaxes of the hyperellipsoids
defined in (12). To conclude the proof, we observe that, for a generic
V matrix, we can consider the distance

|V (x− y)| ≤ ||V || · |x− y| = |x− y|
With this choice, (V x)TΓ(V x) = xTDx and

|x− y| ≥ |V (x− y)| ≥ (1− r)min
i

γi .

Lemma 2: For x(t), x̄(t) ∈ Rn for a given Δ > 0, assume

|x(t)− x̄(t)| < Δ .

Consider two symmetric, positive-definite matrix valued functions
of time Γ(t) and Γ̄(t) such that ∀ t ∈ [t0 , t0 + T ]

Γ̄(t) =
1

r(t)2
Γ(t) .

If the inequality x̄T (t)Γ̄(t)x̄(t) < 1 holds on the time interval t ∈
[t0, t0 + T ], then, on the same interval

xT (t)Γ(t)x(t) < 1 ∀ r(t) ≤ 1− Δ

mini(γi(t))

where { 1
γi(t)2

} are the eigenvalues of Γ(t) at time t.
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Proof: The result is obtained immediately by applying Lemma 1 at
each time instant t. �

Remark 1: For well posedness, it must hold that
Δ < mini ,t{γi(t)} ∀t ∈ [t0, t0 + T ].

Using Lemma 2, we can now state the following result.
Theorem 1: Consider the LTV system (10) and its averaged ver-

sion (11). Suppose that the dithering/mixing frequency ω is chosen so
that |x(t)− x̄(t)| < Δ for t ∈ [t0 , t0 + T ].

If the following DLMI condition is satisfied for some Q(t) , k , α,
and Π(t):⎧⎪⎪⎨
⎪⎪⎩

−Q̇(t) +Q(t)A(t) +AT (t)Q(t)− kαQ(t)Π(t)B(t)BT (t)
−kαB(t)BT (t)Π(t)Q(t) ≺ 0 ∀ t ∈ [t0 , t0 + nT ]
Q(t) ≺ Γ̄−1(t) ∀ t ∈ [t0 , t0 + nT ]
Q(t0) � R−1

(13)

where Γ̄(t) is the matrix-valued function of time defined in Lemma 2
with

r(t) ≤ 1− Δ

mini(γi(t))

then the closed-loop system (10) is FTS with respect
to (t0 , T ,R ,Γ(t)) for the same values of k , α , and Π(t).

Proof: Comparing (7) to (11), we choose

K(t) = −kαBT (t)Π(t) . (14)

For Lemma 1, the FTS of the averaged system (11) with respect
to (t0 , T ,R , Γ̄(t)) implies the FTS of the closed-loop system (10)
with respect to (t0 , T ,R ,Γ(t)).

Condition (13) is immediately obtained by combining (8), (9), and
(14) and substituting Γ(t) with Γ̄(t) in the FTS problem formulation
for the averaged system. �

Remark 2: Note that Δ must be small enough so that the well-
posedness condition Γ̄(t0) ≺ R is still satisfied. �

By applying Theorem 1, we obtain the DLMI problem (13), which
is still nonlinear, as it contains the product of the design parame-
ters k , α ,Π(t), and Q(t). To solve it, observe [24] that the term
kαBBTΠx̄ in (11) is proportional to the gradient of the Lyapunov-
like function V (t , x) = xTΠ(t)x, evaluated for x = x̄. This term is
weighted by the positive semidefinite matrixB(t)B(t)T . If the product
kα is large enough, under a condition of persistency of excitation of
B(t), this gradient term dominates the A(t)x̄ term, and the trajec-
tory of the averaged system evolves according to a gradient descent
of V (t , x̄). According to the definition of FTS, we want to keep the
quantity x(t)TΓ(t)x(t) below 1, therefore it makes sense to choose
Π(t) = Γ(t). This choice will also turn useful in the calculations of
Section IV. We can, then, perform a scan in the product kα in order
to find a solution in terms of Q(t). It is worth to remark that the
proposed technique gives no particular prescription on how to tune these
parameters, as the averaged system dynamics only depends on their
product. However, their choice can influence the stability properties of
the original system, amplitude of the oscillations, and capability of the
algorithm of escaping the local minima of V (x). For a discussion on
the choice of k and α, see [8, Section 1.3].

IV. PRACTICAL CHOICE OF THE DITHERING FREQUENCY

As mentioned in the previous sections, the original and averaged
systems exhibit so-called converging trajectories. In particular, it can
be shown that given a distanceΔ, it is always possible to find a minimum
frequency ω∗ such that the distance |x(t)− x̄(t)| is smaller than Δ for
all ω > ω∗. This means that, once the dithering frequency has been

chosen such that the condition ω > ω∗ is satisfied and the control
matrix-valued function Π(t) has been fixed, Theorem 1 can be applied
to find the values of the design parameters k and α that guarantee the
FTS of a system in the form (10) by means of the equivalent FTS
problem formulated in terms of its autonomous Lie-bracket averaged
counterpart (11). We now turn our attention to the problem of finding an
estimate of the minimum dithering frequency needed for this modified
ES algorithm.

For simplicity, we will consider the case where the B(t) matrix
is a constant of unknown sign, say B(t) = B. Moreover, let us fix
Π(t) = Γ(t) and assume x(t0) = x̄(t0) = x0 (note that the dithering
signal can always be chosen so as to be 0 at t = t0).

Direct integration of (10) gives

x(t) = x0 +

∫ t

t0

A(τ)x(τ)dτ +
α√
ω
B [sin(ωτ)]tt0

−
∫ t

t0

Bk
√
ω sin(ωτ)

(
xT (τ)Γ(τ)x(τ)

)
dτ .

Integrating by parts the last term, using again (10), the fact that
xT (t)Γ(t)B = BTΓ(t)x(t) (it is scalar) and applying the standard
trigonometric identities we have (time dependencies are dropped for
clarity)

x(t) = x0 +

∫ t

t0

[
A− kαBBTΓ

]
xdτ

+
α√
ω
B [sin(ωτ)]tt0 +

k√
ω
B
[
cos(ωτ)xTΓx

]t
t0

−
∫ t

t0

k√
ω
B cos(ωτ)

(
xT Γ̇x

)
dτ

−
∫ t

t0

2˜k√
ω
B cos(ωτ)

(
xTΓAx

)
dτ

−
∫ t

t0

kα cos(2ωτ)BBTΓxdτ

−
∫ t

t0

k2 sin(2ωτ)BBTΓx
(
xTΓx

)
dτ . (15)

This expression is exact. In particular, one possibility to find a lower
bound on the dithering frequency ω would be to integrate by parts the
terms depending on 2ωτ that appear on the last rows of (15)∫ t

t0

kα cos(2ωτ)BBTΓxdτ

=

[
kα

2ω
BBTΓx sin(2ωτ)

]t

t0

−
∫ t

t0

kα

2ω
BBT sin(2ωτ)

[
Γ̇x+ Γẋ

]
dτ

∫ t

t0

k2 sin(2ωτ)BBTΓx
(
xTΓx

)
dτ

=

[
− k2

2ω
BBTΓx

(
xTΓx

)
cos(2ωτ)

]t

t0

+

∫ t

t0

k2

2ω
BBT cos(2ωτ)

(
Γ̇x+ Γẋ

) (
xTΓx

)
dτ

+

∫ t

t0

k2

2ω
BBT cos(2ωτ)Γx

(
xT Γ̇x+ 2xTΓẋ

)
dτ
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to obtain, along the lines of [23, Th. 1], an expression in the form

x− x̄ =

∫ t

t0

[
A− kαBBTΓ

]
(x− x̄)dτ +

∑
i

Ri

where each remainder term Ri satisfies |Ri| ≤ ci√
ω

, for some constant
ci independent of t0 and x0 and for ω large enough, under some
(reasonable) assumptions. Then, the Gronwall–Bellman lemma can be
applied to obtain an upper bound on the distance between the actual and
averaged trajectories, which can be made arbitrarily small by increasing
ω. However, the need for several partial integrations leads to cumber-
some calculations, and to a result which is not readily interpretable.
Moreover, the exploitation of the Gronwall–Bellman lemma easily
leads to very conservative estimates. Hence, we propose to exploit the
intrinsic time-scale separation property of the algorithm in order to
draw an approximate expressionforx(t)− x̄(t). This leads us to invoke
the following approximation.

Approximation 1: Exploit the time-scale separation property of ES,
and assume that the oscillations of the dithering and mixing terms vary
on a much faster scale than the other terms appearing in the integrals
of (15).

The whole ES method is based on the implicit assumption that all
the terms in the right-hand side of (15) but the ones related to the
average dynamics, i.e., x0 +

∫ t

t0
[A− kαBBTΓ]xdτ , vanish for ω →

∞. Hence, a “safe” approximation is to assume everywhere that, for a
generic function of time f(t)∫ t

t0

f(τ) sin(ωτ)dτ =

[
f(τ)

ω
cos(ωτ)

]t

t0

+

∫ t

t0

ḟ(τ)

ω
cos(ωτ)dτ

∼=
[
f(τ)

ω
cos(ωτ)

]t

t0

i.e., ḟ(t) << ω. This leads to Approximation (15) as

x(t) ∼= x0 +

∫ t

t0

[
A− kαBBTΓ

]
xdτ

+
α√
ω
B [sin(ωτ)]tt0 +

k√
ω
B
[
cos(ωτ)xTΓx

]t
t0

− k

ω
√
ω
B
[
xT Γ̇x sin(ωτ)

]t
t0

+
2 k
ω
√
ω
B
[
xTΓAx sin(ωτ)

]t
t0

− kα

2ω
BBT [Γx sin(2ωτ)]tt0

+
k2

2ω
BBT

[
Γx

(
xTΓx

)
cos(2ωτ)

]t
t0

. (16)

Approximation 2: Since we are looking for a relatively large dither-
ing frequency, we neglect the highest order terms in 1/

√
ω (i.e., those

with ω
√
ω at the denominator).

This leads to

x(t) ∼= x0 +

∫ t

t0

[
A− kαBBTΓ

]
xdτ

+
α√
ω
B [sin(ωτ)]tt0 +

k√
ω
B
[
cos(ωτ)xTΓx

]t
t0

− kα

2ω
BBT [Γx sin(2ωτ)]tt0

+
k2

2ω
BBT

[
Γx

(
xTΓx

)
cos(2ωτ)

]t
t0

. (17)

Approximation 3:
Assume xTΓ(t)x < 1.
If ω is large enough, |x(t)− x̄(t)| < Δ and the assumptions of

Theorem 1 are satisfied. In turn, this implies that the FTS condition
is satisfied for the controlled system, and thus approximation 3 holds
(see also the similar argument used in [24]).

Remark 3: Intuitively, if |B(t)|, k, and α are of order≈ 1 or below,
approximations 2 and 3 reduce to ω3/2 >> ||Γ̇(t)||, ||Γ(t)A(t)||, i.e.,
the dithering frequency needs to be much faster than the variations of
the quantity xT (t)Γ(t)x(t). �

This allows to obtain the following (approximate) inequality

x(t) ≤ x0 +

∫ t

t0

[
A− kαBBTΓ

]
xdτ

+
2(α+ k)√

ω
|B|+ k(α+ k)

ω
|B|2 max

t

{
σ̄(Γ(t))√
σ(Γ(t))

}
(18)

where σ̄(Γ(t)) is the maximum eigenvalue of Γ(t), σ(Γ(t)) is its min-
imum eigenvalue, and we used the fact (given without demonstration)
that

xTΓx < 1 ⇒ |Γx| ≤ σ̄(Γ(t))√
σ(Γ(t))

.

Let us define κ = maxt{ σ̄(Γ(t))√
σ(Γ(t))

} for brevity (note that κ is a

measure of the hyperellipsoid elongation). By applying the Gronwall–
Bellman lemma, we obtain

|x(t)− x̄| ≤
{
2(α+ k)√

ω
|B|+ k(α+ k)

ω
|B|2κ

}
η (19)

where we defined η = maxt ||e
∫ t

t0
[A(τ)−kαBBTΓ(τ)]dτ ||.

Then, from the desired condition |x(t)− x̄| ≤ Δ, we get the follow-
ing inequality in terms of 1/

√
ω

2√
ω

+
kκ|B|
ω

≤ Δ

(α+ k)η|B| . (20)

Solving (20) for ω provides an indication of the minimum dithering
frequency needed by the algorithm.

Remark 4: In Approximation 2, we neglected the terms proportional
to 1

ω
√
ω

. If ω is large enough so that also the terms ∝ 1
ω

are negligible
in (17), expression (20) admits a neat interpretation. Indeed, it can be
rewritten as

ω ≥
[
2(α+ k)|B|η

Δ

]2

(21)

i.e., the square root of the minimum dithering frequency is inversely
proportional to the required maximum distance, and is directly pro-
portional to the terms that influence the amplitude of the perturbation
injected into the system (α, k, |B|). Moreover, a larger ω is needed if
the system exhibits growing modes, which tends to amplify an initial
perturbation, whose behavior is concisely captured by η.

V. EXAMPLES

In this section, we consider two numerical examples to show the
effectiveness of the proposed approach for FT stabilization via ES.

Example 1: Let us consider the following second-order LTI system:

ẋ(t) = Ax+Bu

=

[
0 0.01

−0.1 0.15

]
x(t) +

[
0

1

]
u(t)
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Fig. 2. State trajectory of the open-loop, controlled, and averaged
system considered in Example 1 when x0 = [0.25 0.25]T . It can be
seen that the open-loop trajectory (green line) is not FTS wrt the chosen
Γ , R , T , and t0. The solid black and dashed black traces represent the
ellipses associated to Γ and Γ̃, while the dotted red circle represent the
ellipse defined by R.

Fig. 3. Product x(t)TΓ(t)x(t) for different choices of the initial state
for the system considered in Example 1.

where the input u(t) is chosen as in (10b). We search for the values of
the control parameters k, α, and ω, which make (1) FTS with respect
to

R = I2/0.4 , Γ(t) = Γ = I2/0.5
t0 = 0 s , T = 10 s

where In is the identity matrix of order n. The maximum allowed
distance between x(t) and x̄(t) has been set to Δ = 0.09 and we have
chosen Π = Γ.

The associated DLMI problem (8) has been discretized with a time
step of Ts = 0.1 s, with Q(t) assumed to be piecewise linear, solved
in MATLAB using the YALMIP [25] parser and the MOSEK [26]
solver. To solve the problem, which is nonlinear, a scan of the prod-
uct kα was performed (starting at kα = 0 with a step of 0.01) to
find the minimum value of kα, which makes the problem feasible
in Q(t). The variables k and α were assumed to be constant and
equal.

For this problem, we obtained the solution kα = 0.04, with the
resulting ωmin

∼= 750 rad/s obtained from (20). For comparison, con-
dition (21) gives a very similar value of ωmin

∼= 739 rad/s. The fact
that the first- and second-order approximated conditions (20) and (21)
yield a very similar value for ωmin suggests that the error introduced
by Approximations 1 and 2 is negligible (note that, in this case,
Γ̇(t) = 0).

Figs. 2 and 3 show the obtained results for k = α, ω = ωmin and five
different random choices of the initial state, all such thatxT

0 Rx0 > 0.8.
In all the considered cases, the distance between the closed loop and
the averaged dynamics is well below the chosen threshold Δ.

Finally, it is worth remarking again here that this approach still works
even when the control direction is reversed, making it appealing for
systems with unknown control direction.

Fig. 4. State trajectory of the open-loop, controlled, and averaged
system considered in Example 2. It can be seen that the open-loop
trajectory (green line) is not FTS wrt the chosen Γ , R , T , and t0. The
solid black and dashed black traces represent the ellipses associated to
Γ and Γ̃, while the dotted red circle represents the ellipse defined by R.

Fig. 5. Product x(t)TΓ(t)x(t) for five random choices of the initial
state of the system considered in Example 2.

Example 2: In this example, we consider again the FTS problem of
Example 1, but this time the B matrix is given by

B(t) =

[
0

cos( 2π
T
t)

]
.

The B matrix is time-varying, with a loss of controllability at
t = 2.5 s and at t = 7.5 s, where B(t) = [0 0]T . Problem (13) was
solved using the MOSEK [26] solver discretizing the DLMI condition
with a sampling time Ts = 0.01 s. The problem admits a solution for
kα = 0.11.

Although an explicit bound in the case of time-varying B(t) was not
derived in Section IV, if B(t) varies on time scales, which are slower
than those of the dithering/mixing signals, if Approximation 1 holds for
|Ḃ(t)|, we expect (20) to still provide a good approximation for ωmin.
For this example, the value obtained by (20) is ωmin

∼= 1931 rad/s, and
again (21) provides a very close value of about 1902 rad/s. Figs. 4 and 5
show the obtained results for k = α, ω = ωmin for one random choice
of the initial state.

Example 3: Consider the LTV system

ẋ(t) = A(t)x+Bu

= (1 + t/10)

[
0.5 −0.1

0 −0.15

]
x(t) +

[
1

0

]
u(t)

where the input u(t) is chosen as in (10b). We search for the values of
the control parameters k, α, and ω that FT stabilize (1) with respect to

R =

[
6.25 0

0 9.375

]
, Γ(t) = Γ0

(
et/10

)
with Γ0 =

[
4 0

0 6

]

t0 = 0 s , T = 5 s .

The maximum allowed distance between x(t) and x̄(t) has been set
to Δ = 0.0735, and we have chosen Π(t) = Γ(t).
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Fig. 6. State trajectory of the open-loop, controlled, and averaged
system considered in Example 3. It can be seen that the open-loop
trajectory (green line) is not FTS wrt the chosen Γ , R , T , and t0. The
solid black and dashed black traces represent the ellipses associated
to Γ(t0) and Γ̃(t0), and the gray ones represent the ellipses defined
by Γ(t0 + T ) and Γ̃(t0 + T ), while the dotted red circle represent the
ellipse defined by R.

Fig. 7. Product x(t)TΓ(t)x(t) for five random choices of the initial
state of the system considered in Example 3.

To solve the resulting DLMI, the time interval [t0, t0 + T ] was
discretized in 300 subintervals;Q(t)was again assumed to be piecewise
linear. For this problem, we obtained the solution kα = 0.14, ωmin

∼=
1714 rad/s obtained from (20). Condition (21) yields a very similar
value of ωmin

∼= 1656 rad/s. It can be verified that Approximations 1
and 2 are well satisfied for these values of ω.

A. Accuracy of the Proposed Bound on ω

The bound (21) is actually a conservative condition. In order to
numerically assess how conservative this condition is, the following
analysis has been carried out.
1) For Problems 1 and 3, we define the maximum allowed Δ

as ΔM = ||Γ(t0)||−1/2 − ||R||−1/2 (see also Remark 1). A scan
with different values of Δ in the interval Δ = [0.5 , 0.95]ΔM was
performed, by choosing an appropriate Γ̄ for each value of Δ, and
setting kα equal to 0.04 and 0.15, respectively, in order to stabilize
all the considered cases. Values ofΔ below0.5ΔM were discarded,
because a very small Δ may result into a very large ω, which due
to the intrinsic double time-scale of the algorithm, may lead to very
slow simulations and to numerical problems.

2) Condition (21) has, then, been used to find an estimate of the
minimum frequency ω; this solution was also compared with the
second-order approximation provided by (20).

3) The behavior of the closed-loop system was then simulated over an
evenly spaced and slightly larger range of frequencies wrt the ones
obtained from (20) and (21), and the maximum obtained distance
between the actual and average trajectories for a random initial
condition has been compared with the value of Δ used in (20)
and (21).

The results are shown in Fig. 8. It can be seen how, fixing ω and
solving for Δ, the actual maximum distance |x(t)− x̄(t)| is smaller
then Δ by a factor ∼ 4÷ 10 in all the considered cases. Moreover,

Fig. 8. Comparison of the solutions of (20) and (21) with the actual
maximum distance obtained in simulation. See the main text for details.

it can be observed how the first- and second-order solutions are very
close to each other.

VI. CONCLUSION

In this article, an approach for the FT stabilization of LTV systems
with unknown control direction based on a modified version of the
standard ES algorithm has been presented. The proposed methodology
allows to design a static state feedback law that FT stabilizes the system
in an average sense. This, in turn, implies the FT stability of the sys-
tem’s state trajectories under the assumption that the dithering/mixing
frequency ω is chosen high enough and that the Γ(t) matrix in the FTS
definition is modified opportunely (Γ̃(t)). Approximate indications on
the choice of a minimum dithering/mixing frequency are also given,
taking advantage of the time-scale separation property on which the ES
algorithm is based to derive a lower bound on

√
ω in the form of simple

first- or second-order inequalities. Albeit approximate, the proposed
numerical examples show that this bound is indeed capable of providing
a satisfactory, and sometimes even quite conservative estimate of the
minimum frequency needed, which still holds when the B matrix is
slowly varying over time.
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